Scilab Function
Last update : 23/10/2007
fstair - computes pencil column echelon form by qz transformations
Calling Sequence
-
[AE,EE,QE,ZE,blcks,muk,nuk,muk0,nuk0,mnei]=fstair(A,E,Q,Z,stair,rk,tol)
Parameters
-
A
: m x n matrix with real entries.
-
tol
: real positive scalar.
-
E
: column echelon form matrix
-
Q
: m x m unitary matrix
-
Z
: n x n unitary matrix
-
stair
: vector of indexes (see ereduc)
-
rk
: integer, estimated rank of the matrix
-
AE
: m x n matrix with real entries.
-
EE
: column echelon form matrix
-
QE
: m x m unitary matrix
-
ZE
: n x n unitary matrix
-
nblcks
:is the number of submatrices having full row rank >= 0 detected in matrix
A
.
-
muk:
integer array of dimension (n). Contains the column dimensions mu(k) (k=1,...,nblcks) of the submatrices having full column rank in the pencil sE(eps)-A(eps)
-
nuk:
integer array of dimension (m+1). Contains the row dimensions nu(k) (k=1,...,nblcks) of the submatrices having full row rank in the pencil sE(eps)-A(eps)
-
muk0:
integer array of dimension (n). Contains the column dimensions mu(k) (k=1,...,nblcks) of the submatrices having full column rank in the pencil sE(eps,inf)-A(eps,inf)
-
nuk:
integer array of dimension (m+1). Contains the row dimensions nu(k) (k=1,...,nblcks) of the submatrices having full row rank in the pencil sE(eps,inf)-A(eps,inf)
-
mnei:
integer array of dimension (4). mnei(1) = row dimension of sE(eps)-A(eps)
Description
Given a pencil
sE-A
where matrix
E
is in column echelon form the
function
fstair
computes according to the wishes of the user a
unitary transformed pencil
QE(sEE-AE)ZE
which is more or less similar
to the generalized Schur form of the pencil
sE-A
.
The function yields also part of the Kronecker structure of
the given pencil.
Q,Z
are the unitary matrices used to compute the pencil where E
is in column echelon form (see ereduc)
See Also
quaskro
,
ereduc
,
Author
Th.G.J. Beelen (Philips Glass Eindhoven). SLICOT