Réponses
f(x):=(x+1)*ln(abs(x-3))
f1:=function_diff(f):;
f1(x)
ln(abs(x-3))+(x+1)/(x-3)
f2:=function_diff(f1):;
f2(x)
1/(x-3)+1/(x-3)+(x+1)*(-(1/((x-3)^2)))
normal(f2(x))
(x-7)/(x^2-6*x+9)
factor(f2(x))
(x-7)/((x-3)^2)
Autre façon
On tape pour définir la fonction f :
f(x):=(x+1)*ln(abs(x-3))
dfx:=diff(f(x)
ln(abs(x-3))+(x+1)/(x-3)
f1:=unapply(dfx,x);
ddfx:=diff(dfx)
1/(x-3)+1/(x-3)+(x+1)*(-(1/((x-3)^2)))
ddfx:=factor(diff(dfx))
(x-7)/((x-3)^2)
f2:=unapply(ddfx,x);
limit(f1(x),x,-infinity)
+infinity
limit(f1(x),x,3,-1)
-infinity
assume(x<3);fsolve(f1(x),x)
x,0.776592890991
purge(x)
f1(0.7)
0.0937786881525
f1(0.8)
-0.0297244578175
f1(7)
ln(4)+2
limit(f(x),x,-infinity)
-infinity
limit(f(x),x,+infinity)
+infinity
limit(f(x),x,3)
-infinity
plofunc(f(x),x);droite(x=1);droite(x=2)
integrate(f(x),x,-1,2)
8*ln(4)-12+15/4
normal(8*ln(4)-12+15/4))
8*ln(4)-33/4
ibpu((x+1)*ln(abs(x-3)),ln(abs(x-3)))
[((x^2)/2+x)*ln(abs(x-3)),(-x^2-2*x)/(2*x-6)]
A:=ibpu([((x^2)/2+x)*ln(abs(x-3)),(-x^2-2*x)/(2*x-6)],0)
(-x^2-10*x)/4-15*1/2*ln(abs(x-3))+((x^2)/2+x)*ln(abs(x-3))
preval(A,-1,2)
8*ln(4)-9/4-6)
normal(8*ln(4)-9/4-6))
8*ln(4)-33/4